(1) Given $f(x, y, z)=x^{2} y^{3} z^{4}+y e^{y z}-\sqrt{4-x^{2}}$, find the first order partial derivatives $f_{x}, f_{y} f_{z}$.
(9 points)

$$
\begin{aligned}
& f_{x}(x, y, z)=2 x y^{3} z^{4}+\frac{x}{\sqrt{4-x^{2}}} \\
& f_{y}(x, y, z)=3 x^{2} y^{2} z^{4}+e^{y t}+y z e^{y z} \\
& f_{z}(x, y, z)=4 x^{2} y^{3} z^{3}+y^{2} e^{y z}
\end{aligned}
$$

Note: Monomials are written with
Note: Monomials are writictical
\# first, then alphabetical

$$
\begin{gathered}
f_{z}(x, y, z)=4 x^{2} y^{3} z^{3}+y^{2} e^{y z} \quad \frac{d x}{\text { in }} \\
\text { Note: Monomials are written with } \\
\text { all col }
\end{gathered}
$$

make sure your explanation shows you
really do understand what it means
(2) The table below represents $R(\theta, v)$, the range, in feet, that a ball travels if thrown with an initial speed of $v \mathrm{ft} / \mathrm{sec}$ at an angle θ degrees.

SPEED $v(\mathrm{ft} / \mathrm{s})$

a) Find $R(45,85)$ Give units and physical meaning. $R(45,85)=226 \mathrm{ft}$.

This is the range, in feet, that a izall travels if thrown with an initialspeed of $85 f t / m$ at 45°
b) Estimate $\frac{\partial R}{\partial \theta}(45,85)$. Only one estimate needed (no need to average two). Interpret the physical meaning. Give proper units. Show work.

$$
\begin{aligned}
& \frac{\partial R}{\partial \theta}(45,85) \approx \frac{226-222}{45-40}=\frac{4}{5} \mathrm{ft} / \text { degree } \\
& \text { OR } \\
& \frac{222-226}{50-45}=-\frac{4}{5} \mathrm{ft} / \text { degree }
\end{aligned}
$$

$\frac{\partial R}{\partial \theta}(45,85)$ gives the instantaneous rate of change of the Range of the ball relative to a change in angle while holding velocity constant
(So if we keep the initial velocity the same, the range will change approximately $\frac{4}{5}$ ft for a change of one degree)
(3) For the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x^{3} y}{3 x^{6}+y^{2}}$
(a) Find $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ along any straight line $\mathrm{y}=\mathrm{mx}$. ___

$$
\lim _{x \rightarrow 0} \frac{x^{3} m x}{3 x^{6}+(m x)^{2}}=\lim _{x \rightarrow 0} \frac{m x^{4}}{3 x^{6}+m^{2} x^{2}}=\lim _{x \rightarrow 0} \frac{m x^{2}}{3 x^{4}+m^{2}}
$$

(b) Find $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ along the curve $y=x^{3} \ldots \quad \frac{1}{4}$

$$
\lim _{x \rightarrow 0} \frac{x^{3} x^{3}}{3 x^{6}+\left(x^{3}\right)^{2}}=\lim _{x \rightarrow 0} \frac{x^{6}}{4 x^{6}}=\frac{1}{4}
$$

(c) What can be said about $\lim _{(x, y)(0,0)} f(x, y)$? It does not axis

Note: If theyHAD been the same value, the limit might exist, but we cannot know for sure by checking paths.

